p. 607.

BAR, B., HANSEN-NYGAARD, L. & RASTRUP-ANDERSEN, J. (1958). J. Mol. Spectr. 2, 361.

BASTIANSEN, O., HEDBERG, K. & HEDBERG, L. (1957). J. Chem. Phys. 27, 1311.

CRUICKSHANK, D. W. J. (1957). Acta Cryst. 10, 504.

CRUICKSHANK, D. W. J. & SPARKS, R. A. (1960). Proc. Roy. Soc. A, 258, 270.

Acta Cryst. (1961). 14, 1065

The Crystal Structures of IrAs₃ and IrSb₃

BY ARNE KJEKSHUS AND GUNNAR PEDERSEN

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Norway

(Received 28 October 1960)

The compounds $IrAs_3$ and $IrSb_3$ have the CoAs₃-type structure (space group Im3) with

IrAs₃: a = 8.4691 Å, $y = 0.350 \pm 0.002$, $z = 0.146 \pm 0.002$, density = 9.03 g.cm.⁻³, IrSb₃: a = 9.2495 Å, $y = 0.343 \pm 0.001$, $z = 0.157 \pm 0.001$, density = 9.26 g.cm.⁻³.

The shortest interatomic distances are

$$\begin{split} Ir-6\,As = & 2\cdot 445 \pm 0\cdot 012, \ As-As = & 2\cdot 473 \pm 0\cdot 034 \ \text{and} \ & 2\cdot 541 \pm 0\cdot 034 \ \text{\AA} \ , \\ Ir-6\,Sb = & 2\cdot 613 \pm 0\cdot 006, \ Sb-Sb = & 2\cdot 904 \pm 0\cdot 018 \ \text{\AA} \ . \end{split}$$

The compounds have almost zero magnetic susceptibility.

The structure parameters have been refined by a trial-and-error method. Three different reliability indices R_1 , R_2 and R_3 have been calculated to check the agreement between I_o and I_c for every shift of the atoms. Systematic improvement of the coordinates is discussed on the basis of R(y, z) maps.

Introduction

In recent studies of the iridium antimonides (Žuravlev & Ždanov, 1956; Kuzmin et al., 1957) a compound IrSb₃, was identified by means of X-ray and metallographic methods. According to Žuravlev & Ždanov the structure is of the skutterudite, CoAs₃, type, and in making their structure determination they used Oftedal's (1928) parameter values for CoAs₃. Oftedal's values were based on the postulated relation $y+z=\frac{1}{2}$ between the independent parameters y and z, which makes all distances between immediately coordinating arsenic atoms equal. This relation has also been used by Rosenqvist (1953) for CoSb₃ and by Žuravlev & Ždanov (1956) for CoSb₃ and RhSb₃. In order to check this assumption a reinvestigation of IrSb₃ was carried out. As a preliminary study of the iridiumarsenic system indicated the existence of an isostructural compound IrAs₃, this compound was also investigated.

The IrAs₃ and IrSb₃ samples were made by heating weighed quantities of iridium and arsenic or antimony at about 850 °C. in pure alumina crucibles placed inside silica tubes which were evacuated and sealed. The samples were heated at this temperature for one month and cooled slowly to room temperature. Heat treatment at temperatures above 1200 °C. indicates that IrAs₃ and IrSb₃ are formed peritectically. For IrSb₃ this is in agreement with the result by Kuzmin *et al.* (1957), who found that this compound has a peritectic temperature between 800 and 950 °C.

Crystallographic data

Powder photographs of IrAs₃ and IrSb₃ were taken with filtered Cu K-radiation ($\lambda_{\alpha_1} = 1.54050$ Å) in cameras with 114.6 mm. effective diameter and indexed on the basis of a cubic unit cell, cf. Tables 1 and 2. The extrapolated lattice constants (Nelson & Riley, 1945) of IrAs₃ and IrSb₃ are listed in Table 3, together with the lattice constant for IrSb₃ determined by Žuravlev & Ždanov (1956). The agreement between this value and the new one is very satisfactory.

On the basis of the observed densities at 25.00 °C., cf. Table 3, the unit cell contains $8 AB_3$ -groups $(Z_c=7.92 \text{ for IrAs}_3 \text{ and } Z_c=7.91 \text{ for IrSb}_3)$.

The systematic missing reflections were of the type (hkl) absent when $h^2 + k^2 + l^2 = 2n + 1$. This condition also characterized the possible space groups of CoAs₃ (Oftedal, 1928). According to Oftedal the atomic arrangement in the skutterudite, CoAs₃, structure in terms of the space group $Im3(T_h^5)$ is as follows:

8 Co	in	(e)	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	etc.
$24 \mathrm{As}$	\mathbf{in}	(g)	0, y, z	etc.

STOICHEFF, B. P. (1954). Canad. J. Phys. 32, 339. STOICHEFF, B. P. & LANGSETH, A. (1956). Canad. J. Phys. 34, 350.

ROBERTSON, J. M. & WHITE, J. G. (1945). J. Chem. Soc.,

MORINO, Y. (1960). Acta Cryst. 13, 1107.

Table 1. Powder photograph data of $IrAs_3$ taken with Cu K-radiation

 α_2 and β lines omitted. Calculated intensities for y=0.350 and z=0.146

$\sin^2 heta imes 10^4$	$h^2 + k^2 + l^2$	Io	Ic	$ sin^2 t$	$\theta imes 10^4$	$h^2 + k^2 + l^2$	Io	Ic
166	2	10.7	9.5	51	37	62	3.9	3.3
330	4	73.7	73.5	53	002	64	6.1	5.6
496	6	9.0	6.7	54	69	66*	1.5	1.1
663	8	59.3	58.4	56	32	68	18.7	19.2
828	10	$64 \cdot 2$	57.0	57	99	70*	1.7	1.1
993	12	31.0	28.6	59	63	72	17.2	18.6
1159	14	17.9	13.5	61	.30	74	9.7	9.5
1326	16	11.0	9.4	62	291	76	6.0	6.7
1491	18	5.3	4.2		_	78*	0.0	0.1
1657	20	82.6	88.2	66	525	80	4 ·2	3.9
1822	22	4 ⋅8	4.4	67	89	82	$2 \cdot 2$	1.7
1991	24	52.5	54.1	69	954	84	15.0	17.7
2153	26	23.9	20.5	71	21	86*	1.2	1.1
	30*	0.0	0.2	72	282	88	4.1	4.4
2653	32	4.7	4 ·7	74	47	90	1.7	1.9
2816	34	6.1	5.1	77	78	94	6·4	$7 \cdot 1$
2982	36	$6 \cdot 3$	6.1	79	941	96	7.6	9.1
	38*	0.0	0.3	81	10	98	$4 \cdot 2$	3.3
3314	40	18.1	19.0	82	274	100	$5 \cdot 5$	6.6
3482	42*	1.4	1.1	84	139	102	1.5	1.5
3642	44	16.5	17.2	86	$305 \cdot 4$	104	19.0	25.7
3810	46	$6 \cdot 3$	5.6	87	68	106	$2 \cdot 2$	1.9
3973	48	12.0	12.3	89	35.6	108	6.0	8.0
4141	50	$2 \cdot 3$	$2 \cdot 0$	91	00.6	110	7.7	11.4
4307	52	15.9	16.6	94	129	114	$2 \cdot 9$	4 ·0
4472	54	3.1	$2 \cdot 3$	95	595·9	116*	51.0	98.0
4637	56	10.7	11.3	97	60	118*	4 ·0	$3 \cdot 2$
4805	58	5.8	5.4	99	926.0	120*	51.5	199.5

Table 2. Powder photograph data of IrSb_3 taken with Cu K-radiation

$\sin^2 \theta \times 10^4$	$h^2 + k^2 + l^2$	I naise onn	Ic	$\sin^2\theta \times 10^4$	$h^2 + k^2 + l^2$	I_{o}	Ic
139	2	22.0	23.2	5002	72	38.4	41.9
277	4	89.5	94.7	5137	74	23.8	17.2
416	õ	22.0	12.8	5276	76	8.2	6.8
555	8	39.4	40.1		78*	0.0	0.5
693	10	163.4	187.9	5557	80*	2.8	2.5
832	12	23.0	22.2	5693	82	8.9	9.3
973	14	63.4	58.0	5831	84	10.5	9.9
1111	16	13.0	12.7	5968	86	5.8	4.6
1251	18	19.4	17.1	6110	88	4.3	4.1
1391	20	125.8	147.7	6248	90	2.7	3.3
1527	22	20.1	20.9	6525	94	22.7	23.8
1667	24	88.7	101.1	6663	96	13.6	13.3
1805	$\overline{26}$	56.5	50.9	6801	98	9.7	7.7
2085	30*	1.7	0.9	6940	100	6.7	6.0
2225	32*	3.4	3.4	7081	102*	1.9	1.6
2360	34	$34 \cdot 4$	26.2	7217	104	11.1	10.5
2498	36	9.5	7.2	7352	106	11.0	7.9
2640	38	$5 \cdot 2$	5.5	7494	108	3.0	2.8
2780	40	27.5	26.0	7632	110	18.5	17.4
2921	42*	$2 \cdot 0$	0.9	7908	114	4.7	2.8
3057	44	32.5	33.1	8048	116	61.1	59.0
3195	46	31.1	29.8	8184	118	18.7	17.1
3334	48	17.1	18.5	8324	120	58.9	61.2
3470	50	10.1	9.6	8461	122	13.4	11.3
3612	52	19.7	21.3	8737	126	6.4	7.6
3747	54	9.3	6.6	8878	128	5.0	5.5
3887	56	7.2	$7 \cdot 2$	9016-4	130	19.4	18.8
4027	58	18.2	16.6	9153	132	14.8	13.4
4302	62	12.3	9.7	9293.4	134	$24 \cdot 2$	27.6
4441	64	7.7	6.1	9431.9	136	42.9	41.8
4580	66	3.3	$2 \cdot 0$	9570	138	$4 \cdot 2$	3.9
4719	68	$37 \cdot 1$	35.3	9708.9	140*	85.8	108.5
4862	70	11.5	8.8	9847	142*	16.3	24.4

 α_2 and β lines omitted. Calculated intensities for y = 0.343 and z = 0.157

Table 3. Lattice constants and observed densities of IrAs₃ and IrSb₃

Compound	a (Å)	$d ({\rm g.cm.}^{-3})$	Reference
IrAs ₃ IrSb ₂	$8.4691 \\ 9.2495$	9·03 9·26	${f Present}$
$IrSb_3$	$9 \cdot 248 \pm 0 \cdot 002$	8.9	Žuravlev & Ždanov

While the positions of the cobalt atoms are fixed, two parameters, y and z, are necessary to establish the positions of the arsenic atoms. A projection of the CoAs₃-type structure is shown in Fig. 1, where the postulated relation $y+z=\frac{1}{2}$ is indicated by the broken line.

Fig. 1. Projection of one unit cell of the CoAs₃-type structure, with y=0.35 and z=0.15. Filled circles represent metal atoms and open circles metalloid atoms. Figures give the *x*-parameters of the atoms. The broken line indicates $y+z=\frac{1}{2}$.

Determination of the parameters

The relative intensities of the reflections on the powder photographs of $IrAs_3$ and $IrSb_3$ were determined from photometer recordings of the films. Multiple-film photographs were used to avoid errors in the estimation of the highest and weakest intensities on the photographs.

The intensities of the reflections were calculated using the formula

$$I_c = 10^{-6} \times |F|^2 \times Lp \times v$$
.

Thus no corrections for absorption and temperature factors were used. The calculation of the F-values was made in terms of the atomic arrangement for the skutterudite structure. The observed intensities were referred to a relative, absolute scale by making the sums of I_o and I_c equal.

The parameters of the metalloid atoms were refined by a trial-and-error method. A set of I_c was prepared for the different values of y and z listed in Tables 4 and 5. To check the agreement between each set of

Fig. 2. Projection on y, z-plane of R(y, z) for IrAs₃. Contours are drawn at constant values of R. (a) R_1 , (b) R_2 and (c) R_3 .

Fig. 3. Projection on y, z-plane of R(y, z) for IrSb₃. Contours are drawn at constant values of R. (a) R_1 , (b) R_2 and (c) R_3 .

 I_c and I_o , statistical tests were applied. Three different reliability indices

$$\begin{aligned} R_1 &= \Sigma | \mathcal{V}(I_c) - \mathcal{V}(I_o) | / \Sigma \mathcal{V}(I_o) \\ R_2 &= \Sigma | \mathcal{V}(I_c) - \mathcal{V}(I_o) |^2 / \Sigma I_o \\ R_3 &= \Sigma | I_c - I_o | / \Sigma I_o \end{aligned}$$

were calculated and the values noted in Tables 4 and 5. R(y, z) maps, cf. Figs. 2(a), (b), (c) and 3(a), (b), (c), are drawn on the basis of these values. As seen from the figures, the R_1 , R_2 and R_3 maps turned out to be similar for each compound. Furthermore, for each compound, minima in the different R maps are found at the same y, z-values. In agreement with convention the final parameters are taken equal to the y, z-values for the absolute minimum in the R-factors. The best agreement is thus obtained with the following parameters:

IrAs₃
$$y = 0.350 \pm 0.002$$
 $z = 0.146 \pm 0.002$
IrSb₃ $y = 0.343 + 0.001$ $z = 0.157 + 0.001$.

The probable errors in the parameters, indicated by the limits, are estimated from the curvature of the *R*-surfaces on the R(y, z) maps. Despite the fact that the minima in Figs. 2(*a*), (*b*), (*c*) are not found on the line $y+z=\frac{1}{2}$, Oftedal's (1928) relation is satisfied within the limited accuracy.

The I_o and I_c values are listed in Tables 1 and 2. The observed intensities of the strong, high-angle reflections with $\theta \ge 78 \cdot 4^{\circ}$ are considerably lower than calculated, probably because of systematic errors, and are not taken into account in the statistical *R*-tests. In addition, the observed intensities of the weakest reflections are supposedly evaluated more incorrectly than the other reflections and are not used in the calculations of the various *R*-factors. It should be noted, however, that the R(y, z) maps are only slightly changed when these reflections, marked by asterisks in Tables 1 and 2, are taken into account. The minima are still found at the same y, z-values.

Discussion of the refinement method

Although the calculations are carried out according to a trial-and-error method, the refinement method using the *R*-maps is closely related to systematic methods (Vand *et al.*, 1960). The curvature and form of the *R*-surface are of fundamental importance in systematic refinement methods. Especial interest is connected with the R_2 -surface because of the close relation between the R_2 -function and the $R^* = \sum w(|F_c| - |F_o|)^2$ function for least-squares refinement.

It is convenient to represent the normal equations of the method of least-squares (Templeton, 1960) as follows:

$$ME = D, E = M^{-1}D$$
.

The elements of the column matrix \mathbf{E} are the shifts e_i of the parameters x_i . The elements of the column matrix \mathbf{D} are:

Table 4. Calculated values of R_1 , R_2 and R_3 for IrAs₃ with different parameter values y, z

z	y	R_1	R_2	R ₃	z	\boldsymbol{y}	R_1	R_2	R_3
0.134	0.344	0.1073	0.0145	0.1655	0.146	0.354	0.0645	0.0056	0.1017
0.134	0.350	0.1037	0.0132	0.1730	0.147	0.351	0.0572	0.0042	0.0916
0.137	0.340	0.0989	0.0143	0.1399	0.147	0.353	0.0601	0.0050	0.0943
0.137	0.357	0.1222	0.0188	0.1974	0.148	0.342	0.0612	0.0044	0.1047
0.138	0.342	0.0934	0.0111	0.1454	0.148	0.352	0.0577	0.0046	0.0921
0.138	0.348	0.0839	0.0087	0.1403	0.148	0.357	0.0730	0.0079	0.1122
0.140	0.344	0.0979	0.0114	0.1628	0.120	0.320	0.0616	0.0047	0.1037
0.140	0.354	0.0852	0.0088	0.1433	0.120	0.354	0.0666	0.0060	0.0988
0.142	0.346	0.0687	0.0070	0.1083	0.121	0.355	0.0704	0.0068	0.1068
0.143	0.352	0.0645	0.0054	0.1043	0.152	0.344	0.0800	0.0079	0.1312
0.144	0.348	0.0573	0.0042	0.0922	0.153	0.340	0.1045	0.0133	0.1723
0.144	0.358	0.0927	0.0103	0.1537	0.153	0.352	0.0756	0.0069	0.1162
0.146	0.342	0.0724	0.0063	0.1152	0.153	0.357	0.0860	0.0112	0.1196
0.146	0.350	0.0561	0.0040	0.0914	0.126	0.358	0.0986	0.0151	0.1413

Table 5. Calculated values of R_1 , R_2 and R_3 for IrSb₃ with different parameter values of y, z

z	y	R_1	R_2	R_3	z	\boldsymbol{y}	R_1	R_2	R_3
0.140	0.340	0.1493	0.0218	0.2230	0.157	0.343	0.0583	0.0049	0.1087
0.142	0.343	0.1436	0.0225	0.2248	0.157	0.348	0.0843	0.0099	0.1402
0.147	0.333	0.1394	0.0419	0.2003	0.157	0.358	0.1695	0.0378	0.2616
0.147	0.353	0.2087	0.0530	0.3218	0.158	0.342	0.0616	0.0055	0.1148
0.148	0.338	0.0930	0.0163	0.1456	0.158	0.344	0.1218	0.0402	0.1774
0.148	0.342	0.1079	0.0195	0.1790	0.128	0.320	0.1178	0.0240	0.1920
0.148	0.346	0.1287	0.0323	0.2059	0.158	0.352	0.1563	0.0423	0.2375
0.150	0.340	0.0687	0.0066	0.1178	0.160	0.330	0.1336	0.0207	0.2295
0.152	0.338	0.1111	0.0387	0.1668	0.160	0.340	0.0786	0.0082	0.1402
0.152	0.340	0.1159	0.0398	0.1956	0.160	0.346	0.1356	0.0450	0.2245
0.152	0.341	0.0815	0.0157	0.1412	0.160	0.350	0.1038	0.0155	0.1631
0.152	0.343	0.0628	0.0060	0.1109	0.162	0.343	0.0873	0.0103	0.1203
0.153	0.336	0.1227	0.0393	0.2097	0.162	0.348	0.1515	0.0501	0.2274
0.154	0.346	0.0756	0.0071	0.1326	0.162	0.352	0.1472	0.0346	0.2604
0.154	0.352	0.1398	0.0302	0.2270	0.164	0.346	0.1557	0.0473	0.2563
0.156	0.342	0.1077	0.0388	0.1530	0.167	0.333	0.1693	0.0316	0.2902
0.156	0.344	0.0599	0.0050	0.1102	0.167	0.353	0.2130	0.0731	0.3023
0.157	0.328	0.1336	0.0214	0.2276	0.170	0.340	0.1464	0.0289	0.2369
0.157	0.338	0.0674	0.0064	0.1247	0.172	0.343	0.1493	0.0301	0.2410

$$d_i = \sum w \frac{\partial |F_c|}{\partial x_i} \left(|F_c| - |F_o| \right) = \frac{\partial R^*}{\partial x_i}$$

The elements of the square matrix M are:

$$m_{ij} = \Sigma w \; rac{\partial |F_c|}{\partial x_i} \; rac{\partial |F_c|}{\partial x_j} \; .$$

The elements of the inverse matrix \mathbf{M}^{-1} are proportional to the variances and covariances of the parameters. (Most of the programs for least-squares refinement of atomic coordinates for ordinary digital computers neglect off-diagonal terms in \mathbf{M} .)

As the geometrical interpretation of **D** is a vector equal to the gradient along the R^* -surface, the successive improvement of the parameters x_i according to the method of least-squares terminates in a minimum value on the R^* -surface. The existence of secondary minima on the R^* -surface (cf. the R_2 surface Fig. 3(b)) is of fundamental importance, since with the method of least-squares one is unable to separate the absolute minimum from a secondary one. Thus the possibility of wrong solutions for the parameters is introduced and wrong bond distances might be obtained. Between two minima, e.g. on the R_2 -surface in Fig. 3(b), curves corresponding to the geographical 'watersheds' might be drawn. Using the method of least-squares one is probably not able to cross from one side of a 'watershed' to another.[†] Thus the starting point seems to be of importance for the final parameters. If secondary minima on the R^* -surface are supposed to be common for structures with two and more parameters, a disagreement between the parameters from two different X-ray (or between X-ray and neutron parameters) studies might be found. To avoid this error, different starting points for the least-squares improvement should be tried to check whether the final parameters are changed or not.

The contours for constant values of R, cf. Figs. 2-3, around the absolute minimum are far from circular[‡]. The minimum value is more sharply determined in some directions than in others. A set of parameters with low R-value might well be found at a larger distance from the parameters of the absolute minimum than a set with higher R-value. Thus one R-value is

[†] An attempt to solve the differential equations for the 'watersheds' will be the outlines for further work.

 $[\]ddagger$ A detailed recalculation covering a larger area in the yz plane is in progress.

	${f Meta}$	l-metalloid d	listance (Å)		Metalloid-metalloid distance (Å)			
Compound	Observed	Covalent	Metallic	Ionic	Observed	Covalent	Metallic	Ionic
IrAs ₃	$2{\cdot}445\pm0{\cdot}012$	2.50	2.475	'2 ·54'	$2 \cdot 473 \pm 0 \cdot 034$ $2 \cdot 541 \pm 0 \cdot 034$	2.36	2.601	'2 •98'
\mathbf{IrSb}_{3}	$2{\cdot}613\pm0{\cdot}006$	2.68	2.656	' 2·70'	$2{\cdot}904\pm0{\cdot}018$	2.72	2.963	' 3·30'

Table 7. Magnetic susceptibility of IrAs₃ and IrSb₃ measured by the Gouy method

The $\chi_g \times 10^6$ values are mean values of the results at $H_{\text{max}} = 4015$, 4700 and 5110Ø

Temperature °C.

Compound	-183	-78	20	150	300	450	Induced diamagnetism
${ m IrAs}_3 \ { m IrSb}_3$	-0.21 - 0.16	-0.21 - 0.16	-0.21 - 0.16	-0.23 - 0.19	-0.26 - 0.24	-0.26 - 0.27	-0.56 -0.58

not a significant measure for the correctness of the reliability of a particular structure determination.

Discussion of the structures

The coordination in the CoAs₃-type structure is seen from Fig. 1. Each metal atom has six metalloid neighbours octahedrally arranged. Each metalloid atom has two metalloid neighbours and two metal neighbours, the four forming a tetrahedral arrangement. The shortest interatomic distances are listed in Table 6, together with the values expected from the covalent, metallic and ionic models of the chemical bond.

In applying the covalent valence-bond description (Pauling, 1960) the iridium (IrIII) atom probably can be said to form d^2sp^3 bonds and the arsenic and antimony atoms to form sp^3 bonds. This gives larger metal-metalloid distances and smaller metalloidmetalloid distances than the observed values. Better agreement is obtained by using the metallic radii of the elements (Pauling, 1960). An ionic description of the skutterudite structure, would probably correspond to the ions Ir^{3+} and $(As_4)^{4-}$ or $(Sb_4)^{4-}$, respectively (Rosenqvist, 1953). The radius of the Ir^{3+} ion as well as the radii of arsenic and antimony in $(As_4)^{4-}$ and $(Sb_4)^{4-}$ ions are difficult to stipulate. The distances listed in Table 6 are the radii sums according to Rabinowitsch & Thilo (1929). Real ionic distances are expected to be still higher, i.e., definitely larger than the observed distances.

Further support for a covalent or metallic model is obtained from the magnetic criterion for bond types. The measured susceptibilities, cf. Table 7, are exceedingly low and almost balanced by the diamagnetism induced in the compounds. The diamagnetic corrections are -40.1×10^{-6} per mole Ir° according to Søvold (1954), -64.6×10^{-6} per mole As³⁻ and -94.4per mole Sb^{3-} according to Angus (1932). They are given per gram of the compounds in the far column of Table 7. By subtracting these values from the measured susceptibilities, the susceptibilities of the paramagnetic ions are obtained. The effective magnetic moments, which range from 0.32 to 1.00 Bohr magnetons, show that the compounds are of an essentially covalent or metallic type. In case the bond had been of ionic type, the 'spin only' theory demands a magnetic moment of $4.90 \,\mu B$ for compounds containing the Ir³⁺ ion.

The authors are greatly indebted to Dosent Fredrik Grønvold for suggesting the investigation of the relation $y+z=\frac{1}{2}$ and for his kind help and interest. They should also like to express their appreciation to Prof. Haakon Haraldsen for his interest in this study and for placing laboratory facilities at their disposal.

The financial assistance of Norges almenvitenskapelige forskningsråd is gratefully acknowledged (A. K.).

References

- ANGUS, W. (1932). Proc. Roy. Soc. A, 136, 569.
- KUZMIN, R. N., ŽDANOV, G. S. & ŽURAVLEV, N. N. (1957). Kristallografija, 2, 48.
- NELSON, J. B. & RILEY, D. P. (1945). Proc. Phys. Soc. Lond. 57, 160.
- OFTEDAL, I. (1928). Z. Kristallogr. A, 66, 517.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell University Press.
- RABINOWITSCH, E. & THILO, E. (1929). Z. phys. Chem. B, 6, 284.
- ROSENQVIST, T. (1953). Acta Met. 1, 761. Trondheim, Norway: NTH-Trykk.
- Søvold, L. (1954). Thesis, University of Oslo.
- TEMPLETON, D. H. (1960). Z. Kristallogr. 133, 234.
- VAND, V., NIGGLI, A. & PEPINSKY P. (1960). Acta Cryst. 13, 1001.
- ŽURAVLEV, N.N. & ŽDANOV, G.S. (1956). Kristallografija, 1, 509.